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Abstract - In our previous work [1], we proposed a scalable 

packet switch architecture based on the Central-stage Buffered 

Clos-network (CBC). We analyzed the memory requirements for 

the CBC to emulate an output-queued (OQ) switch and left the 

corresponding scheduling algorithms unexplored. In this paper1,

we set out to find a practical algorithm to schedule packets in 

order for the CBC to emulate an OQ switch supporting Quality 

of Service (QoS). We observe that the CBC surprisingly extend 

the well-known Birkhoff-von Neumann input-queued switches 

[15], making it able to scale to large switches with many in-

put/output ports. In particular, as far as we know, the most effi-

cient scheduling algorithm for a Birkhoff-von Neumann switch 

has a time complexity of O(N4.5), where N is the number of switch 

ports. We show in this paper that we can reduce it to O(N2.25) by 

employing a multi-stage multi-layer switch implementation.  

I. INTRODUCTION

With the constantly growing Internet traffic and the de-
velopment of broadband access technologies, such as DSL, 
cable modem and gigabit Ethernet, the future broadband 
packet switches/routers should be able to support a large

number of connection ports for at least the following two rea-
sons [2]. a) The number of Internet access points is still rap-
idly increasing; and b) The development of optical transmis-
sion technologies makes huge number of communication 
channels available. We cannot afford to scale current single-
stage crossbar based routers simply because the building costs 
and complexity of the switching hardware and scheduling 
algorithms usually depend on the square of the number of 
switch ports.  

As an alternative approach, we try to construct a large 
switching system out of many smaller switches. However, we 
cannot simply interconnect these smaller switches in a 
straightforward manner. A simple hierarchical network is not 
efficient for building large switching systems. It will also cre-
ate several stages of queuing delay and may result in unpre-
dictable performance.   

In our previous work [1], we proposed a scalable packet 
switch based on the Central-stage Buffered Clos-network, 

which we denoted as the CBC architecture. We figured out the 
memory requirements for the CBC to emulate an output-
queued (OQ) switch, for both first-come-first-served OQ 
switches and OQ switches with a general queuing discipline, 

1 This research is supported under RGC HKUST6200/02E. 

e.g. weighted fair queuing (WFQ) [9], for various QoS guar-
antees. 

In the meantime, in industry Cisco has unveiled its next 
generation routing system CRS-1 [13] very recently, which is 
also based on a multi-stage multi-layer Benes architecture. But 
their technical specifications remain proprietary that we do not 
know much about the details of their design. 

The basic intuition behind the Central-stage Buffered 
Clos-network (CBC) for packet switches is based on the ideas 
of single-stage buffering [8] and multi-stage multi-layer 
switching. Different from many implementations of com-
bined-input-output-queued (CIOQ) switches, the CBC switch 
employs a single stage of buffering, which makes each mem-
ory efficiently shared among all inputs/outputs. Multi-stage 
multi-layer switching is a natural way to scale switches and 
may decompose complex scheduling algorithms into many 
smaller layers that will have less complexity, since they may 
deal with traffic only locally if properly designed. 

The memory requirements for the CBC to emulate an OQ 
switch, as shown in [1], are very interesting and illuminating. 
In this paper, we propose a scheduling algorithm for the CBC 
to emulate an OQ switch based on the Birkhoff-von Neumann 
matrix decomposition method. 

Although the Birkhoff-von Neumann matrix decomposi-
tion has been employed in the input-queued switches [15] and 
the load-balanced version [19], they are mainly used in the 
single layer crossbar switching. The most efficient matrix de-
composition method available has a time complexity of 

4.5( )O N , which was suggested by Birkhoff [14] and Von 
Neumann [18], where N is the number of switch ports. The 
main contribution of this paper is that by employing a multi-
stage multi-layer switching, we can distribute the traffic ma-
trix decomposition computation into many smaller switches, 
thus reducing the scheduling complexity to 2.25( )O N . Not all 
multi-layer switches can achieve this since the Birkhoff-von 
Neumann matrix decomposition relies on the non-overbooking

conditions of switch inputs/outputs. For a multi-layer switch, 
the overall non-overbooking does not necessarily mean all the 
smaller switches inside also have the non-overbooking condi-
tions. We show that in the CBC architecture, by carefully dis-
patching packets into the central stage buffers, all the smaller 
switches (layers) inside hold the non-overbooking conditions 
as well. 
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The rest of this paper is organized as following: In section 
II, we introduce the Central-stage Buffered Clos-network for 
packet switches and show the memory requirements for the 
CBC to emulate an FCFS-OQ switch. In section III, we first 
analyze the memory requirements for the CBC to emulate an 
OQ switch with a general queuing discipline and then propose 
a scheduling algorithm. In section IV, we identify the main 
advantages of the scheduling algorithm and talk about some 
practical considerations. Then we will have a conclusion. 

I. THE CENTRAL-STAGE BUFFERED CLOS-NETWORK 

FOR PACKET SWITCHES

A. Some definitions 

Before proceeding into the introduction of the CBC archi-
tecture, we would like to make clear some definitions used in 
our presentation. We adopt the fixed-length packet concept 
and call the packets or segmented packets 'cells' afterwards. 
This is common practice in high performance routers [7].  

Time Slot - Refers to the time taken to transmit or receive 
a fixed length cell at the line rate R. We assume that in every 
time slot, there is at most one cell arriving at each input port 
and at most one cell departing from each output port.   

Output Queued (OQ) switch - A switch in which arriv-
ing cells are placed immediately in queues at the output, 
where they contend with cells destined for the same output 
waiting for their turns to depart. The departure order may be 
simple First-Come-First-Served (FCFS), in which case we 
call it an FCFS-OQ switch. Other service disciplines, such as 
WFQ [9], GPS [10], and DRR [11] are widely used to provide 
QoS guarantees. One characteristic of an OQ switch is that the 
buffer memories must be able to accept (write) N cells and 
read one cell per time slot, where N is the number of ports. 
Hence, the memory must operate at N + 1 times the line rate.   

PIFO queues - A Push-In-First-Out queue ordering is 
defined according to the following rules. (1) Arriving cells are 
placed at (or, pushed in) an arbitrary location in the queue; (2) 
The relative order of cells in the queue does not change once 
cells are in the queue, i.e., cells in the queue cannot switch 
places; and (3) Cells may be selected to depart from the queue 
only from the head. PIFO queues are quite general and can be 
used to implement various QoS scheduling disciplines such as 
WFQ, GPS and strict priorities.   

B. The Central-stage Buffered Clos-network 

We proposed a new model (CBC) for multi-stage multi-
layer packet switches. As shown in figure 1, the architecture 
resembles the traditional Clos-network except that we split the 
central-stage switches into two identical copies, with a mem-
ory linking each output/input pair. As shown in the figure, we 
call the left part to the memories the first switching phase and 
the right part the second switching phase. 

Like the Clos-network, we also use parameters ( , , )n m k

to describe the symmetric CBC architecture. There are k input 
modules (IM), each of which is an n m  switch. There are 

two copies of m central modules (CM), each of which is a 
k k switch. The number of independent memories between 
the two copies of CM is mk  in total. There are k output mod-
ules (OM), each of which is an m n  switch. Each pair of IM 
and CM (CM and OM) is connected by one and only one link. 
There are totally N input ports and N output ports for the 
whole CBC architecture, where N n k .
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Figure 1: Basic architecture of the Central-stage Buffered Clos-
network 

The reason why we use two copies of the central stage is 
that we want to make the memories to be fully shared among 
all the input and output ports. Otherwise, if we only use one 
copy of the central stage, e.g. missing all the CM in the first 
switching phase, we cannot make one memory be accessed by 
all the input ports, which makes inefficient use of all the 
memories. 

C. Emulating an FCFS-OQ switch 

We state the memory requirements for the CBC to emu-
late an FCFS-OQ switch in the following theorem. In an 
FCFS-OQ switch, the departure time is assigned to every cell 
according to their arriving time and never changes in future.  

Theorem 1: The number of the central modules 
(2 1)(2 1/ )m n k  suffices to guarantee every incoming 

cell a compatible memory to be written in without input con-
tention, thus making the CBC capable of emulating an FCFS-
OQ switch without internal speedup [1]. 

Corollary: The CBC can emulate an FCFS-OQ switch 
with the number of central stage modules 2 1m n , i.e. a 
traditional Clos-network, using a speedup of 2 1/ k .

This corollary deserves more attention here. If we regard 
the strictly non-blocking Clos-network [3] ( 2 1m n ) as a 
black box and make a combined-input-output-queued (CIOQ) 
switch out of it, then according to [6] we can see that, for 
emulating an FCFS-OQ switch,  the minimum speedup 
needed is 2 1/ N , i.e. 2 1/ nk , which is slightly larger than 
what we get here, which is 2 1/ k . We achieve this number 
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by using a multi-stage multi-layer switch architecture and 
single-stage buffering strategy, which is very different from 
CIOQ’s two stages of buffering and one stage of switching. 

III. THE CBC ARCHITECTURE TO PROVIDE QOS

In order for the CBC to emulate an OQ switch supporting 
Quality of Service (QoS), we use the generalization of the 
weighted-fair-queuing (WFQ) discipline known as a PIFO 
queue. 

First, we point out that it is impossible for the CBC to 
emulate a precise PIFO queue switch without internal memory 
speedup. We note that when a cell comes at a PIFO queue, it 
cannot figure out which memories are compatible since it may 
change its departure time afterwards due to the PIFO disci-
pline. For example, a cell C comes with departure time t ini-
tially; so, it will conflict with all other cells bearing the depar-
ture time t since the memory cannot support two reads in time 
t. Because C's departure time may become t + 1, t + 2… in the 
future, it may also conflict with all other cells bearing the de-
parture time t + 1, t + 2 and so on. The departure conflict can 
be infinite. That is to say, we do not have a deterministic 
scheme for the CBC to emulate strict PIFO-OQ packet 
switches.   

Using the same compromise as that in [8], we relax the 
QoS requirements slightly. We just guarantee to switch out 
cells within no more than a constant delay according to their 
departure times in the PIFO queue. That is to say, if a cell C
should depart from the shadow strict PIFO-OQ switch at time 
t, C is guaranteed to depart from the CBC in no later than time 
t + T, where T is a constant determined by the configuration of 
the CBC architecture. 

With this compromise, we are able to design an elegant 
scheduling algorithm that has a low time complexity. We in-
troduce the basic idea of our scheme here. The first switching 
phase is responsible for dispatching arriving cells into the cen-
tral memories. In the second switching phase, we wait for N
time slots and then lock all the cells required to be out within 
the N time slots in the PIFO queue. We guarantee to switch all 
of them out in the next N time slots. In the meanwhile we have 
locked another batch of cells for the next N time slots to 
switch. Our scheme works in a pipeline manner. Readers will 
find that some cells may be delayed, and we will prove the 
delay is bounded.  

We shall modify the CBC structure slightly. We add 
small buffers in the inputs of all the OMs, allowing the cells 
that are switched out of the CM to be buffered temporarily in 
the OMs, as shown in figure 2. Each buffer runs at the line 
speed and holds up to N cells. A cell traverses the CBC like 
this. First, it is assigned a departure time according to the 
PIFO discipline and written into one of the central memories 
via the first switching phase (meanwhile, all the cells already 
in the central memories will change their departure times if 
affected). Then, it will be switched out of the CM of the sec-
ond switching phase, arriving at the buffers of the OM. Fi-
nally, it will be switched out of the OM, thus out of the CBC. 

A. Scheduling in the first switching phase 

Just like emulating an FCFS-OQ switch, to provide QoS 
support, the first switching phase of the CBC should carefully 
put cells into the central buffers according to the PIFO queu-
ing discipline. We first describe three rules for the first 
switching phase to observe when dispatching cells into the 
central memories. We will prove later that, with these three 
rules observed by the first switching phase, the second switch-
ing phase of the CBC is capable of switching out all the cells 
in the central memories and every cell’s delay is bounded 
compared with that of a shadow PIFO-OQ switch. 

Here are the rules for the first switching phase to observe 
to put an arriving cell C with a departure time t into a mem-
ory:  

1. The memory is not about to be written by another ar-
riving cell in the same time slot; 

2. The CM into which C is about to be written is not 
occupied by another arriving cell that is from the 
same IM as C in the same time slot; and 

3. The memory has no cells destined for the same out-
put as C bearing the departure time within the time 
interval ( , )t N t  and ( , )t t N .

Now we further explain the three rules. The first rule is 
obvious since the memory does not support two simultaneous 
writes. The second rule is due to the structure property of the 
Clos-network. Since there is one and only one link between 
one IM and one CM, the link can only be used for one cell to 
pass in one time slot. The third rule is not so obvious, and we 
will explain later that it is very essential for the second switch-
ing phase to switch all the cells in memories out in time. 

B. Scheduling in the second switching phase 

We prove that the locked batch of cells can be switched 
out of the CM in N time slots and every OM can switch out 
one batch of cells in N time slots.  Then we design an algo-
rithm for the second switching phase to schedule cells based 
on the Birkhoff-von Neumann matrix decomposition. 

Edge coloring problem 

We point out one property of the central memories first. 
That is, one memory can contain at most one cell which is 
destined for a specific output port of the CBC and has the de-
parture time within any arbitrary time slot interval of length N.
To make it clear, the property is formulated in the following: 

For any given output port p and time , for one memory, 
# {cell: cell is destined for p and bearing departure time 

[ , )t N }  1. 

This is because of the third rule stated above by the first 
switching phase. Even if cells may change their departure 
times due to later arrivals, this property still holds.  

Now, consider the CM of the second switching phase of 
the CBC, as shown in the left dashed rectangle in Figure 2. Its 
inputs are linked with memories and its outputs are linked 
with the OMs of the CBC. We represent the scheduling prob-
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lem using a bipartite graph with 2k vertices, as shown in Fig-
ure 3. In every N time slots, we will get a request graph. An 
edge connecting input i to output j represents a cell that needs 
to be transferred from memory i to output j. From the property 
of the memories stated above, we can see that in every con-
secutive N time slots each memory can contain at most one 
cell destined for one output port of the CBC, so each memory 
can have at most N cells to send in this interval of N time 
slots. That is to say the maximum degree of the input i is N.
Consider the degree of the output j now. Every edge of pair (i,
j) stands for that memory i contains cells destined for the OM 
connected by j. Every output module has at most n output 
ports and every memory contains at most one cell for one out-
put port, so there are at most n edges between every pair (i, j).
Therefore, the number of edges connecting output j is no more 
than nk, i.e. N.

Scheduling in each CM can be transformed into an edge-
coloring problem in the request graph, in which the maximum 
degree of vertices is N. From [12], we can prove that the re-
quest graph is N-colorable, which can be transformed into a 
series of switch configurations to schedule the batch of cells 
out of the CM in N time slots. 
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Fig. 2: Analysis on one of the central modules (CM). 

Fig. 3: A request graph for one CM in N time slots. 

Similarly, we can analyze the scheduling of the OM, 
which is shown in the right dashed rectangle in figure 2. From 
the analysis above, we can see that in every N time slots there 
are at most N cells queued in one input of the OM. Therefore, 
the degree of the input i of the request graph for the OM is no 

more than N. The degree of the output j of the request graph is 
also no more than N since there are no more than N cells hav-
ing to be switched out of one output port of the CBC in every 
N time slots. Using the same graph coloring theorem and from 
[12] we can see that there exists an algorithm scheduling the 
batch of cells in N time slots.   

Birkhoff-von Neumann matrix decomposition 

Our scheduling algorithm in the second switching phase 
is based on the Birkhoff-von Neumann matrix decomposition. 
This method has been employed in the Birkhoff-von Neumann 
input queued crossbar switches by C. S. Chang et al. [15]. 
However, we will see the differences later.  

To explain the idea, let the request graph in figure 3 be 
represented by a traffic matrix 

11 1

1

k

k kk

r r

R

r r

,

with 
ij

r  stands for 
ij

r  cells requested to be switched out 
from memory i to output j. According to the analysis above, 
we can know the following two conditions hold: 

1

1

, .............(1)

, .............(2)

k

ij

i

k

ij

j

r N j

r N i

where all the 
ij

r  are integers. 

Using Birkhoff-von Neumann matrix decomposition 
method below, we know that there exists a set of positive in-
tegers 

i
 and permutation matrices 

i
P , 1, 2,...,i K for some 

K N  that satisfies 

1

K

i i

i

R P , and 
1

K

i

i

N .

Once we obtain such decomposition, we can simply 
schedule the connection pattern 

i
P  proportional to its weight 

i
, 1, 2,...,i K .

Different from others’ definition, we call in this paper a 
matrix ( )

ij
R r  that satisfies the conditions (1) and (2) to be 

doubly substochastic. If, furthermore, both inequalities in (1) 
and (2) are equalities, then the matrix ( )

ij
R r  is called dou-

bly stochastic. The decomposition method consists of two 
steps: (i) it first finds a doubly stochastic matrix 'R that is no 
smaller than the original request matrix R, and (ii) it then finds 
decomposition for the doubly stochastic matrix 'R .

The first step is based on the following result by von 
Neumann. 

Proposition 1: (von Neumann [18]) If a matrix ( )
ij

R r

is doubly substochastic, then there exists a doubly stochastic 
matrix ' ( ' )

ij
R r  such that ' , ,

ij ij
r r i j .
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The second step is based on Birkhoff’s result on doubly 
stochastic matrices. 

Proposition 2: (Birkhoff [14]) For a doubly stochastic 
matrix 'R , there exists a set of positive integers

i
 and permu-

tation matrices
i

P , 1, 2,...,i K for some K N  such that 

1
'

K

i i

i

R P , and 
1

K

i

i

N .

C. Scheduling algorithm for the CBC to emulate an OQ 

switch with QoS guarantees 

As we have established the basic Birkhoff-von Neumann 
matrix decomposition method for the second switching phase 
to schedule batches of cells, we now summarize the compelete 
scheduling algorithm for the CBC. 

For the first switching phase of the CBC, every arriving 
cell is dispatched into the central buffers according to the 
three rules stated above. 

For the second switching phase, every CM uses the Birk-
hoff-von Neumann matrix decomposition method applied to 
the request traffic matrix that is a kk  doubly substochastic 
matrix. We should do a little more work for every OM in the 
second switching phase since request traffic matrices for them 
are nm dimensional. We first add nm  (assuming nm )
column vectors with all elements being 0 to the request traffic 
matrix, making it a mm dimensional doubly substochastic 
matrix. Then we apply the Birkhoff-von Neumann matrix de-
composition method to it to obtain a sequence of connection 
patters iP .

The following theorem states the memory requirements 
and delay bounds for the CBC to emulate an OQ switch sup-
porting QoS. 

Theorem 2: The CBC can emulate a PIFO-OQ switch 
within a relative delay of 13N  time slots, if 14nm ,
with no internal speedup.   

Proof:  First, we prove that each cell will be switched out 
within a relative delay of 13N time slots.   

Consider a newly arrived cell C and its possible earliest 
departure time is just now; we denote it as time slot 1. The 
worst case is that the CBC is now switching a full batch of 
cells, which will cost at most N time slots, and the cell C has 
to be lagged into the next batch of cells. So C will be switched 
out sometime between time slots ]2,1[ NN . Hence, the 
maximum relative delay cell C can incur is 12N  time slots 
before arriving at the OM. In addition, cell C may stay in the 
buffer of OM for at most another N time slots before it is 
switched out of the CBC. So, the total maximum relative de-
lay of cell C compared with that in the shadow PIFO-OQ 
switch will add up to 13N time slots.   

Secondly, we will calculate the number of memories 
needed here. Consider a cell C arriving at the input module 
and is about to be written into one of the central-stage memo-
ries. According to the first rule, there may be up to 1N

memories that C cannot be written to. The second rule may 

make up to kn )1( memories incompatible with C since there 
may be up to 1n cells arriving at the same IM as C and each 
of them may occupy a whole bunch of k memories of one CM. 
The third rule may make up to )1(2 N memories incompati-
ble with C.

Sum them up and use the pigeonhole principle, then we 
need at least 

)(,24
1)1(2)1()1(

nkNkN

NknN
   

memories. Therefore, kN4 memories are sufficient for 
the CBC to emulate a PIFO-OQ switch within a constant de-
lay. In terms of the number of central modules: 

14/)4( nkkNm .

We note that for emulating an OQ switch with QoS sup-
port, we need to nearly double the central modules of a tradi-
tional strictly non-blocking Clos-network where 2 1m n .

IV. REMARKS AND PRACTICAL CONSIDERATIONS

The main contribution of this paper is that we build a 
highly scalable packet switch with QoS support. Although we 
use the same method as the well known Birkhoff-von Neu-
mann input queued switch in the main switching phase, we 
achieved a lower scheduling complexity which makes the 
CBC scalable. In particular, the scheduling algorithm for the 
Birkhoff-von Neumann input queued switch has a time com-
plexity of 4.5( )O N [15], where N is the number of switch 
ports. In our multi-stage multi-layer CBC architecture, the 
complexities for the second switching phase are 4.5( )O k and 

4.5( )O m respectively for the CM and OM scheduling. In prac-
tice, we usually set the parameters n k in the CBC. Thus 
k N and 4 1m N for the CBC to emulate a PIFO OQ 
switch. So, the time complexity of scheduling in the CBC is 

4.5 2.25( ) ( )O N O N .

What is more, we distribute the computation of the Birk-
hoff-von Neumann matrix decomposition in a single layer 
switch into many smaller switches (layers), which are CM and 
OM in the second switching phase. We achieve this by using a 
multi-layer of switching. We shall remind here that not all 
multi-layer switches can distribute the matrix decomposition 
into small switches, since the decomposition needs the ‘non-

overbooking’ conditions (inequations of (1) and (2)) and the 
overall non-overbooking does not necessarily mean all the 
modest size switches inside have non-overbooking conditions 
as well if cells are not dispatched into memories properly. 

Another difference of the CBC from the Birkhoff-von 
Neumann input queued switch is that the matrices here are 
real traffic matrices, while in the Birkhoff-von Neumann in-
put-queued switch the matrix is an estimated rate matrix that 
relies on some estimation methods. We do exact packet 
scheduling by using real traffic matrices. 
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Compared with the load-balanced Birkhoff-von Neumann 
switch, the CBC can be regarded as doing a load balancing 
function in the first switching phase. After load balancing in 
the first switching phase of the CBC, cells are guaranteed to 
switch out within a constant delay. However, cells can only be 
guaranteed to switch out of the Load-balanced Birkhoff-von 
Neumann switch with a high probability under some benign 
traffic conditions. We achieve hard QoS guarantees at the cost 
of three hard rules observed by the first switching phase. 
While in load-balanced Birkhoff-von Neumann switches, they 
do not need real schedulers in the first stage. 

When N is so large that the Birkhoff-von Neumann ma-
trix decomposition cannot be completed in one time slot, we 
can make the decompositions pipelined. For example, if the 
time needed for the second switching phase to perform matri-
ces decompositions in the CM and the OM is 2 time slots, 
we make the decomposition processes and scheduling proc-
esses pipeline and the delay bound for every cell now will 
become 3 1 2N . The advantage of this pipelining is that 
the delay is bounded, and does not accumulate as well. 

We said little about the details of the first switching 
phase. Since the task of the first switching phase is to find a 
compatible memory for every arriving cell under the three 
rules. Few bits of communication suffice for the memories 
and arriving cells to determine their compatibilities and the 
implementation details are out of the scope of this paper. We 
only focus on the advantages of the multi-stage multi-layer 
CBC architecture and the scheduling algorithms for the sec-
ond switching phase in this paper. 

V. CONCLUSIONS

In this paper, we first propose a scalable packet switch 
based on the Central-stage Buffered Clos-network. We ana-
lyze the memory requirements for the CBC to emulate an 
FCFS-OQ switch and an OQ switch with QoS support. We 
then design a scheduling algorithm based on the Birkhoff-von 
Neumann matrix decomposition method. 

Our scheduling algorithm for the CBC extends the well-
known Birkhoff-von Neumann input-queued switch into 
multi-stage multi-layer switches, thus making it highly scal-
able. Although there are still some obstacles unaddressed in 
this paper, the ability of decomposing a whole large switching 
system into many modest size switches which reserve similar 
traffic features makes the CBC a desirable solution for the 
next generation high performance switches/routers. 
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